On the Regularizing Levenberg-marquardt Scheme in Banach Spaces

نویسنده

  • QINIAN JIN
چکیده

By making use of duality mappings and the Bregman distance, we propose a regularizing Levenberg-Marquardt scheme to solve nonlinear inverse problems in Banach spaces, which is an extension of the one proposed in [6] in Hilbert space setting. The method consists of two components: an outer Newton iteration and an inner scheme. The inner scheme involves a family of convex minimization problems in Banach spaces from which a suitable criterion is used to select one to produce the increments. The outer iteration is then terminated by a discrepancy principle. Under certain conditions, we establish the convergence of the method.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the convergence of a regularizing Levenberg-Marquardt scheme for nonlinear ill-posed problems

In this note we study the convergence of the Levenberg-Marquardt regularization scheme for nonlinear ill-posed problems. We consider the case that the initial error satisfies a source condition. Our main result shows that if the regularization parameter does not grow too fast (not faster than a geometric sequence), then the scheme converges with optimal convergence rates. Our analysis is based ...

متن کامل

A Regularizing Levenberg - Marquardt Scheme , with Applications to Inverse Groundwaterfiltration

The rst part of this paper studies a Levenberg-Marquardt scheme for nonlinear inverse problems where the corresponding Lagrange (or regularization) parameter is chosen from an inexact Newton strategy. While the convergence analysis of standard implementations based on trust region strategies always requires the invertibility of the Fr echet derivative of the nonlinear operator at the exact solu...

متن کامل

The Levenberg–Marquardt iteration for numerical inversion of the power density operator

In this paper we develop a convergence analysis in an infinite dimensional setting of the Levenberg–Marquardt iteration for the solution of a hybrid conductivity imaging problem. The problem consists in determining the spatially varying conductivity from a series of measurements of power densities for various voltage inductions. Although this problem has been very well studied in the literature...

متن کامل

Pii: S0022-4073(02)00292-3

In this paper we present di0erent inversion algorithms for nonlinear ill-posed problems arising in atmosphere remote sensing. The proposed methods are Landweber’s method (LwM), the iteratively regularized Gauss–Newton method, and the conventional and regularizing Levenberg–Marquardt method. In addition, some accelerated LwMs and a technique for smoothing the Levenberg–Marquardt solution are pro...

متن کامل

On The Convergence Of Modified Noor Iteration For Nearly Lipschitzian Maps In Real Banach Spaces

In this paper, we obtained the convergence of modified Noor iterative scheme for nearly Lipschitzian maps in real Banach spaces. Our results contribute to the literature in this area of re- search.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011